Weighted Chern-mather Classes and Milnor Classes of Hypersurfaces

نویسندگان

  • Paolo Aluffi
  • PAOLO ALUFFI
چکیده

We introduce a class extending the notion of Chern-Mather class to possibly nonreduced schemes, and use it to express the di erence between SchwartzMacPherson's Chern class and the class of the virtual tangent bundle of a singular hypersurface of a nonsingular variety. Applications include constraints on the possible singularities of a hypersurface and on contacts of nonsingular hypersurfaces, and multiplicity computations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chern Classes for Singular Hypersurfaces

We prove a simple formula for MacPherson’s Chern class of hypersurfaces in nonsingular varieties. The result highlights the relation between MacPherson’s class and other definitions of homology Chern classes of singular varieties, such as Mather’s Chern class and the class introduced by W. Fulton in [Fulton], 4.2.6. §0. Introduction 2 §1. Statements of the result 4 §1.1. MacPherson’s Chern clas...

متن کامل

On the Milnor Classes of Complex Hypersurfaces

We revisit known results about the Milnor class of a singular complex hypersurface, and rephrase some of them in a way that allows for a better comparison with the topological formula of Cappell and Shaneson for the Lclass of such a hypersurface. Our approach is based on Verdier’s specialization property for the Chern-MacPherson class, and simple constructible function calculus.

متن کامل

Characteristic Classes of Complex Hypersurfaces

The Milnor-Hirzebruch class of a locally complete intersection X in an algebraic manifold M measures the difference between the (Poincaré dual of the) Hirzebruch class of the virtual tangent bundle of X and, respectively, the Brasselet-Schürmann-Yokura (homology) Hirzebruch class of X. In this note, we calculate the Milnor-Hirzebruch class of a globally defined algebraic hypersurface X in terms...

متن کامل

Hirzebruch-milnor Classes of Complete Intersections

We prove a new formula for the Hirzebruch-Milnor classes of global complete intersections with arbitrary singularities describing the difference between the Hirzebruch classes and the virtual ones. This generalizes a formula for the Chern-Milnor classes in the hypersurface case that was conjectured by S. Yokura and was proved by A. Parusinski and P. Pragacz. It also generalizes a formula of J. ...

متن کامل

Projective Duality and a Chern-mather Involution

We observe that linear relations among Chern-Mather classes of projective varieties are preserved by projective duality. We deduce the existence of an explicit involution on a part of the Chow group of projective space, encoding the effect of duality on Chern-Mather classes. Applications include Plücker formulae, constraints on self-dual varieties, generalizations to singular varieties of class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998